Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Clin Infect Dis ; 2022 Oct 08.
Article in English | MEDLINE | ID: covidwho-2262043

ABSTRACT

BACKGROUND: Increasing the availability of antigen rapid diagnostic tests (Ag-RDTs) in low- and middle-income countries (LMICs) is key to alleviating global SARS-CoV-2 testing inequity (median testing rate in December 2021-March 2022 when the Omicron variant was spreading in multiple countries; high-income countries = 600 tests/100,000 people/day; LMICs = 14 tests/100,000 people/day). However, target testing levels and effectiveness of asymptomatic community screening to impact SARS-CoV-2 transmission in LMICs are unclear. METHODS: We used PATAT, an LMIC-focused agent-based model to simulate COVID-19 epidemics, varying the amount of Ag-RDTs available for symptomatic testing at healthcare facilities and asymptomatic community testing in different social settings. We assumed that testing was a function of access to healthcare facilities and availability of Ag-RDTs. We explicitly modelled symptomatic testing demand from non-SARS-CoV-2 infected individuals and measured impact based on the number of infections averted due to test-and-isolate. RESULTS: Testing symptomatic individuals yields greater benefits than any asymptomatic community testing strategy until most symptomatic individuals who sought testing have been tested. Meeting symptomatic testing demand likely requires at least 200-400 tests/100,000 people/day on average as symptomatic testing demand is highly influenced by non-SARS-CoV-2 infected individuals. After symptomatic testing demand is satisfied, excess tests to proactively screen for asymptomatic infections among household members yields the largest additional infections averted. CONCLUSIONS: Testing strategies aimed at reducing transmission should prioritize symptomatic testing and incentivizing test-positive individuals to adhere to isolation to maximize effectiveness.

2.
Nat Genet ; 55(1): 26-33, 2023 01.
Article in English | MEDLINE | ID: covidwho-2185946

ABSTRACT

The first step in SARS-CoV-2 genomic surveillance is testing to identify people who are infected. However, global testing rates are falling as we emerge from the acute health emergency and remain low in many low- and middle-income countries (mean = 27 tests per 100,000 people per day). We simulated COVID-19 epidemics in a prototypical low- and middle-income country to investigate how testing rates, sampling strategies and sequencing proportions jointly impact surveillance outcomes, and showed that low testing rates and spatiotemporal biases delay time to detection of new variants by weeks to months and can lead to unreliable estimates of variant prevalence, even when the proportion of samples sequenced is increased. Accordingly, investments in wider access to diagnostics to support testing rates of approximately 100 tests per 100,000 people per day could enable more timely detection of new variants and reliable estimates of variant prevalence. The performance of global SARS-CoV-2 genomic surveillance programs is fundamentally limited by access to diagnostic testing.


Subject(s)
COVID-19 , Epidemics , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/genetics , Genomics , Diagnostic Techniques and Procedures , COVID-19 Testing
3.
Immunity ; 55(9): 1725-1731.e4, 2022 09 13.
Article in English | MEDLINE | ID: covidwho-2036138

ABSTRACT

Large-scale vaccination campaigns have prevented countless hospitalizations and deaths due to COVID-19. However, the emergence of SARS-CoV-2 variants that escape from immunity challenges the effectiveness of current vaccines. Given this continuing evolution, an important question is when and how to update SARS-CoV-2 vaccines to antigenically match circulating variants, similarly to seasonal influenza viruses where antigenic drift necessitates periodic vaccine updates. Here, we studied SARS-CoV-2 antigenic drift by assessing neutralizing activity against variants of concern (VOCs) in a set of sera from patients infected with viral sequence-confirmed VOCs. Infections with D614G or Alpha strains induced the broadest immunity, whereas individuals infected with other VOCs had more strain-specific responses. Omicron BA.1 and BA.2 were substantially resistant to neutralization by sera elicited by all other variants. Antigenic cartography revealed that Omicron BA.1 and BA.2 were antigenically most distinct from D614G, associated with immune escape, and possibly will require vaccine updates to ensure vaccine effectiveness.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Antigens, Viral/genetics , COVID-19 Vaccines , Humans , SARS-CoV-2/genetics
4.
Elife ; 112022 09 13.
Article in English | MEDLINE | ID: covidwho-2030291

ABSTRACT

Background: Variants of concern (VOCs) of SARS-CoV-2 have caused resurging waves of infections worldwide. In the Netherlands, the Alpha, Beta, Gamma, and Delta VOCs circulated widely between September 2020 and August 2021. We sought to elucidate how various control measures, including targeted flight restrictions, had impacted the introduction and spread of these VOCs in the Netherlands. Methods: We performed phylogenetic analyses on 39,844 SARS-CoV-2 genomes collected under the Dutch national surveillance program. Results: We found that all four VOCs were introduced before targeted flight restrictions were imposed on countries where the VOCs first emerged. Importantly, foreign introductions, predominantly from other European countries, continued during these restrictions. After their respective introductions into the Netherlands, the Alpha and Delta VOCs largely circulated within more populous regions of the country with international connections before asymmetric bidirectional transmissions occurred with the rest of the country and the VOC became the dominant circulating lineage. Conclusions: Our findings show that flight restrictions had limited effectiveness in deterring VOC introductions due to the strength of regional land travel importation risks. As countries consider scaling down SARS-CoV-2 surveillance efforts in the post-crisis phase of the pandemic, our results highlight that robust surveillance in regions of early spread is important for providing timely information for variant detection and outbreak control. Funding: None.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Humans , Netherlands/epidemiology , Phylogeny , SARS-CoV-2/genetics
5.
Nat Commun ; 13(1): 4610, 2022 08 08.
Article in English | MEDLINE | ID: covidwho-1977995

ABSTRACT

ChAdOx1 nCoV-19 (AZD1222) is a replication-deficient simian adenovirus-vectored vaccine encoding the spike (S) protein of SARS-CoV-2, based on the first published full-length sequence (Wuhan-1). AZD1222 has been shown to have 74% vaccine efficacy against symptomatic disease in clinical trials. However, variants of concern (VoCs) have been detected, with substitutions that are associated with a reduction in virus neutralizing antibody titer. Updating vaccines to include S proteins of VoCs may be beneficial, even though current real-world data is suggesting good efficacy following boosting with vaccines encoding the ancestral S protein. Using the Syrian hamster model, we evaluate the effect of a single dose of AZD2816, encoding the S protein of the Beta VoC, and efficacy of AZD1222/AZD2816 as a heterologous primary series against challenge with the Beta or Delta variant. Minimal to no viral sgRNA could be detected in lungs of vaccinated animals obtained at 3- or 5- days post inoculation, in contrast to lungs of control animals. In Omicron-challenged hamsters, a single dose of AZD2816 or AZD1222 reduced virus shedding. Thus, these vaccination regimens are protective against the Beta, Delta, and Omicron VoCs in the hamster model.


Subject(s)
COVID-19 , Viral Vaccines , Animals , Antibodies, Viral , COVID-19/prevention & control , ChAdOx1 nCoV-19 , Cricetinae , Humans , Mesocricetus , SARS-CoV-2
6.
Vaccine ; 40(32): 4424-4431, 2022 07 30.
Article in English | MEDLINE | ID: covidwho-1882610

ABSTRACT

BACKGROUND: Symptoms of post-acute sequelae of COVID-19 (PASC) may improve following SARS-CoV-2 vaccination. However few prospective data that also explore the underlying biological mechanism are available. We assessed the effect of vaccination on symptomatology of participants with PASC, and compared antibody dynamics between those with and without PASC. METHODS: RECoVERED is a prospective cohort study of adult patients with mild to critical COVID-19, enrolled from illness onset. Among participants with PASC, vaccinated participants were exact-matched 1:1 on age, sex, obesity status and time since illness onset to unvaccinated participants. Between matched pairs, we compared the monthly mean numbers of symptoms over a 3-month follow-up period, and, using exact logistic regression, the proportion of participants who fully recovered from PASC. Finally, we assessed the association between PACS status and rate of decay of spike- and RBD-binding IgG titers up to 9 months after illness onset using Bayesian hierarchical linear regression. FINDINGS: Of 349 enrolled participants, 316 (90.5%) had ≥3 months of follow-up, of whom 186 (58.9%) developed PASC. Among 36 matched pairs with PASC, the mean number of symptoms reported each month during 3 months of follow-up were comparable between vaccinated and unvaccinated groups. Odds of full recovery from PASC also did not differ between matched pairs (OR 1.57 [95%CI 0.46-5.84]) within 3 months after the matched time-point. The median half-life of spike- and RBD-binding IgG levels were, in days (95%CrI), 233 (183-324) and 181 (147-230) among participants with PASC, and 170 (125-252) and 144 (113-196) among those without PASC, respectively. INTERPRETATION: Our study found no strong evidence to suggest that vaccination improves symptoms of PASC. This was corroborated by comparable spike- and RBD-binding IgG waning trajectories between those with and without PASC, refuting any immunological basis for a therapeutic effect of vaccination on PASC.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Bayes Theorem , COVID-19/prevention & control , Humans , Immunoglobulin G , Prospective Studies , SARS-CoV-2 , Vaccination
7.
Emerg Infect Dis ; 28(5): 1012-1016, 2022 05.
Article in English | MEDLINE | ID: covidwho-1736727

ABSTRACT

We report a severe acute respiratory syndrome coronavirus 2 superspreading event in the Netherlands after distancing rules were lifted in nightclubs, despite requiring a negative test or vaccination. This occurrence illustrates the potential for rapid dissemination of variants in largely unvaccinated populations under such conditions. We detected subsequent community transmission of this strain.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Genomics , Humans , Netherlands/epidemiology , SARS-CoV-2/genetics
8.
Cell Rep Med ; 3(1): 100486, 2022 01 18.
Article in English | MEDLINE | ID: covidwho-1569129

ABSTRACT

The urgent need for, but limited availability of, SARS-CoV-2 vaccines worldwide has led to widespread consideration of dose-sparing strategies. Here, we evaluate the SARS-CoV-2-specific antibody responses following BNT162b2 vaccination in 150 previously SARS-CoV-2-infected individuals from a population-based cohort. One week after first vaccine dose, spike protein antibody levels are 27-fold higher and neutralizing antibody titers 12-fold higher, exceeding titers of fully vaccinated SARS-CoV-2-naive controls, with minimal additional boosting after the second dose. Neutralizing antibody titers against four variants of concern increase after vaccination; however, overall neutralization breadth does not improve. Pre-vaccination neutralizing antibody titers and time since infection have the largest positive effect on titers following vaccination. COVID-19 severity and the presence of comorbidities have no discernible impact on vaccine response. In conclusion, a single dose of BNT162b2 vaccine up to 15 months after SARS-CoV-2 infection offers higher neutralizing antibody titers than 2 vaccine doses in SARS-CoV-2-naive individuals.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , BNT162 Vaccine/administration & dosage , BNT162 Vaccine/immunology , COVID-19/immunology , COVID-19/prevention & control , Immunogenicity, Vaccine/immunology , SARS-CoV-2/immunology , Vaccination/methods , Adult , Aged , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/blood , COVID-19/virology , Female , Follow-Up Studies , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Male , Middle Aged , Neutralization Tests , Prospective Studies , Severity of Illness Index , Spike Glycoprotein, Coronavirus/immunology , Treatment Outcome
9.
JAMA Netw Open ; 4(7): e2118554, 2021 07 01.
Article in English | MEDLINE | ID: covidwho-1328587

ABSTRACT

Importance: It is unclear when, where, and by whom health care workers (HCWs) working in hospitals are infected with SARS-CoV-2. Objective: To determine how often and in what manner nosocomial SARS-CoV-2 infection occurs in HCW groups with varying exposure to patients with COVID-19. Design, Setting, and Participants: This cohort study comprised 4 weekly measurements of SARS-CoV-2-specific antibodies and collection of questionnaires from March 23 to June 25, 2020, combined with phylogenetic and epidemiologic transmission analyses at 2 university hospitals in the Netherlands. Included individuals were HCWs working in patient care for those with COVID-19, HCWs working in patient care for those without COVID-19, and HCWs not working in patient care. Data were analyzed from August through December 2020. Exposures: Varying work-related exposure to patients infected with SARS-CoV-2. Main Outcomes and Measures: The cumulative incidence of and time to SARS-CoV-2 infection, defined as the presence of SARS-CoV-2-specific antibodies in blood samples, were measured. Results: Among 801 HCWs, there were 439 HCWs working in patient care for those with COVID-19, 164 HCWs working in patient care for those without COVID-19, and 198 HCWs not working in patient care. There were 580 (72.4%) women, and the median (interquartile range) age was 36 (29-50) years. The incidence of SARS-CoV-2 was increased among HCWs working in patient care for those with COVID-19 (54 HCWs [13.2%; 95% CI, 9.9%-16.4%]) compared with HCWs working in patient care for those without COVID-19 (11 HCWs [6.7%; 95% CI, 2.8%-10.5%]; hazard ratio [HR], 2.25; 95% CI, 1.17-4.30) and HCWs not working in patient care (7 HCWs [3.6%; 95% CI, 0.9%-6.1%]; HR, 3.92; 95% CI, 1.79-8.62). Among HCWs caring for patients with COVID-19, SARS-CoV-2 cumulative incidence was increased among HCWs working on COVID-19 wards (32 of 134 HCWs [25.7%; 95% CI, 17.6%-33.1%]) compared with HCWs working on intensive care units (13 of 186 HCWs [7.1%; 95% CI, 3.3%-10.7%]; HR, 3.64; 95% CI, 1.91-6.94), and HCWs working in emergency departments (7 of 102 HCWs [8.0%; 95% CI, 2.5%-13.1%]; HR, 3.29; 95% CI, 1.52-7.14). Epidemiologic data combined with phylogenetic analyses on COVID-19 wards identified 3 potential HCW-to-HCW transmission clusters. No patient-to-HCW transmission clusters could be identified in transmission analyses. Conclusions and Relevance: This study found that HCWs working on COVID-19 wards were at increased risk for nosocomial SARS-CoV-2 infection with an important role for HCW-to-HCW transmission. These findings suggest that infection among HCWs deserves more consideration in infection prevention practice.


Subject(s)
Antibodies, Viral/blood , COVID-19/blood , COVID-19/genetics , Personnel, Hospital , Phylogeny , Population Surveillance , SARS-CoV-2/immunology , Adult , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Serological Testing , Cohort Studies , Female , Humans , Incidence , Male , Middle Aged
10.
Science ; 372(6540): 354, 2021 04 23.
Article in English | MEDLINE | ID: covidwho-1199749
11.
Ann Surg ; 272(6): 919-924, 2020 12.
Article in English | MEDLINE | ID: covidwho-1029777

ABSTRACT

OBJECTIVE: To determine the yield of preoperative screening for COVID-19 with chest CT and RT-PCR in patients without COVID-19 symptoms. SUMMARY OF BACKGROUND DATA: Many centers are currently screening surgical patients for COVID-19 using either chest CT, RT-PCR or both, due to the risk for worsened surgical outcomes and nosocomial spread. The optimal design and yield of such a strategy are currently unknown. METHODS: This multicenter study included consecutive adult patients without COVID-19 symptoms who underwent preoperative screening using chest CT and RT-PCR before elective or emergency surgery under general anesthesia. RESULTS: A total of 2093 patients without COVID-19 symptoms were included in 14 participating centers; 1224 were screened by CT and RT-PCR and 869 by chest CT only. The positive yield of screening using a combination of chest CT and RT-PCR was 1.5% [95% confidence interval (CI): 0.8-2.1]. Individual yields were 0.7% (95% CI: 0.2-1.1) for chest CT and 1.1% (95% CI: 0.6-1.7) for RT-PCR; the incremental yield of chest CT was 0.4%. In relation to COVID-19 community prevalence, up to ∼6% positive RT-PCR was found for a daily hospital admission rate >1.5 per 100,000 inhabitants, and around 1.0% for lower prevalence. CONCLUSIONS: One in every 100 patients without COVID-19 symptoms tested positive for SARS-CoV-2 with RT-PCR; this yield increased in conjunction with community prevalence. The added value of chest CT was limited. Preoperative screening allowed us to take adequate precautions for SARS-CoV-2 positive patients in a surgical population, whereas negative patients needed only routine procedures.


Subject(s)
Asymptomatic Infections , COVID-19/diagnosis , Emergency Treatment , Mass Screening/statistics & numerical data , Preoperative Care/methods , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Surgical Procedures, Operative , Thorax/diagnostic imaging , Tomography, X-Ray Computed , Elective Surgical Procedures , Humans , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL